
N94- 35436

Modeling and Managing Risk Early in Software Development*

//

Lionel C. Briand, William M. Thomas_ and Christopher J. Hetmanski

Department of Computer Science

University of Maryland, College Park, MD 20742

Abstract

In order to improve the quality of the software
development process, we need to be able to build
empirical multivariate models based on data collectable
early in the software process. These models need to be
both useful for prediction and easy to interpret, so that
remedial actions may be taken in order to control and
optimize the development process. We present an
automated modeling technique which can be used as an
alternative to regression techniques. We show how it can
be used to facilitate the identification and aid the
interpretation of the significant trends which characterize
"high risk" components in several Ada systems. Finally,
we evaluate the effectiveness of our technique based on a
comparison with logistic regression based models.

1 Introduction

It is often noted that a small number of software

components are responsible for a large part of the
difficulty during software development. In light of this
relationship, there have been a number of studies that
focus on the development and use of models to identify
these "high risk" components [PA+82, SP88, BlX)2,
MK92]. There are two different aspects to be treated
when one builds a risk model. First, metrics that are
good predictors of risk should be defined and validated.

Second, a suitable (in terms of underlying assumptions)
modeling technique should be used so that prediction is
accurate and interpretation possible. Once these "high
risk" components have been identified, the development
process can be optimized to reduce risk. This can be
performed from various perspectives of risk, e.g, number
of errors, error density, associated cost of change during
either testing or maintenance. For example, additional
testing can be applied to those components that have
been determined to be likely to contain a high density of
defects.

*This work was SUl_Oned in part by NASA grant NSG-5123

_Also wi& The MITRE Corp., McLean, VA.

Process improvement in terms of the prediction of
defects in the delivered product is one area that has
received a significant amount of attention recently
[SP88, MK92]. Recent studies have focused on the
identification of problem areas during the design phase,
noting that the software architeclan'e is a major factor in
the number of errors and rework effort found in later
phases [HK81, ROM87, CA88, AES90]. If such
potential problem areas can be detect_ during the design,
as opposed to during implementation or test, the
development organization may have more options
available to mitigate the risk. For example, rather than
intensively testing the "problem components", one
might restructure the system to avoid the potential
problems entirely. While this may be an option during
the design phase, it is a very unlikely scenario late in the
implementation phase.

Thus our goal is to use measures of the design phase to
determine potential problem areas in the delivered
product, and allow for a wide range of
preventive/corrective actions to be taken. Examples of
these types of actions include increasing testing,
providing additional documentation, re-designing a part
of the system, and providing additional training.

We need a modeling process that will allow for the
reliable detection of potential problem areas and for the
interpretation of the cause of the problem so that the
most appropriateremedial action can be taken. In this
context, we will examine the use of the following
modeling approaches:

• Logistic regression, which is one of the most
common classification techniques [Agrg0]. This
technique has been applied to software engineering
modeling [MK92], as well as other experimental
fields.

• Optimized Set Reduction (OSR), which is based on
both statistics and machine learning principles
[Qui86]. This approach has been developed at the
University of Maryland and has been applied in several
software engineering applications [BET92, BBH92].

10014023L 2-35

PR(__ P,AGE BLANK NOT FIL_.EID

Both techniques will be evaluated with respect to their
accuracy, constraints of use and ease of interpretation. In
summary, we intend to show that OSR may be used as
an alternative to logistic regression to generate models
using architectural metrics which can be used to control
a software development project. Through the
interpretation of OSR model, we will demonstrate how
OSR can be useful in performing exploratory data
analysis. Also, we will show that OSR models will
allow one to predict and explain, at an early stage, where
and why difficulties are likely to occur within the system
architecture. Thus, planning, managing resources and
quality control can become more effective.

This paper presents the results of an investigation into
the use of the two different modeling techniques to
support the identification and understanding of high risk
components in Ada designs. Section 2 will define the
notion of components that we used in this study of Ada
systems, identify what we had targeted as "high risk",
and present an overview of the modeling techniques.
Section 3 will present the architectural metrics that were
used in the study, and describe the underlying principles
on which they are based. Section 4 presents the
predictive accuracy of each technique, while section 5
discusses and provides interpretations of the models.
Section 6 presents the major conclusions of the study.

to isolate and understand. Similarly, a component was
placed in the high completion cost class if there is a
defect associated with it that required more than one day
to complete the error correction, once it had been
isolated. The reason for the use of these two models is to
better understand the major influences in error isolation
difficulty and error completion difficulty, which are
likely to be different. These definitions of high cost
components provide a more useful notion of difficulty to
a project manager. The statement "there is likely to be
defect associated with this component, and its going to
be hard to fix", is a much stronger statement than "there
is likely to be defect associated with this component."

A random selection of approximately 150 components
from three Ada systems was used to calibrate and
evaluate the two modeling techniques (logistic regression
and OSR). Our notion of a "component" is described in
section 3. An equal number of components were chosen
from the two classes in order to ensure the construction
of unbiased models and thereby facilitate their evaluation
and comparison. For each component fX) in the sample,
a model was developed based on the remaining
components ({Sample - X}) and used to "predict"
whether the component (X) is likely to be in the high
risk class. This model validation method, known as V-
fold cross-validation [BF+84], is commonly used when
data sets are mmil.

2 Experiment Design and Modeling
Techniques

2.1 Objectives of the Study

The data used in our analysis originates in the
NASA/GOddard Space Flight Center Flight Dynamics
Division. A number of Ada systems have been built in
this environment, and a wealth of data has been collected
on their development, ranging from items such as
component reuse, to error origins, and to the amount of
effort spent performing various development activities.

A research project at the MH'RE corporation studied a
number of these Ada systems, and related characteristics
of software architecture to quality factors concerning the
presence of defects, the difficulty in correcting defects,
and the difficulty in adapting the system to changes
[AES90, EA92]. Several regression-based models have
been developed to predict quality factors from
archiw._'tural characteristics. These models tackled issues

such as identifying error-prone or difficult to modify
components. We defined the notion of a high risk
component based on a combination of the above two
quality factors. We defined two classes, high isolation
cost, and high completion cost, and built models for
each. From change report form data, a component would
be placed in the high isolation cost class if there is a
defect in the component that requites more than one day

Characteristics of the design were used as explanatory
variables in order to build classification models of

Ada components. These design characteristics are
identified in section 3 along with our definition of
software "component". The classification models will
identify the components where at least one error was
detected during system and acceptance test such that the
error isolation/correction effort required more than one
day. Two modeling approaches were evaluated: logistic
regression with a stepwise variable selection, and
optimized set reduction. The characteristics of each
technique are briefly described in the following

2.2 Logistic Regression

The first technique, logistic regression analysis, is based
on the following relationship equation [Agrg0]:

Iog(_p)_ = Co + Ct * XI + C: * X,+...+CN * XN

As an example, we can assume P to be the probability
of a component to be in the high risk class, i.e. is likely
to have at least one difficult error to correct., and the Xi's

to be the design metrics included as predictors in the
model. In the two extreme eases, i.e. when a variable is
either non significant or differentiates entirely the two

10014023L 2-36

classes, the curve (between P and any Xi) approximates

a horizontal line and a vertical line respectively. In
between, the curve takes a S shape. However, since P is

unknown, the coefficients Ci will be approximated

through a likelihood function optimization. Based on the
equation above, the likelihood function of a data set of
size D is:

D e(Ce+C1*X aio.=+c_*Xi)oY_

L = 1"[1 + e(¢°+c''x"''+c''x'>'v'
i=l

The coefficients that will maximize the likelihood
function will be the regression coefficient estimates.
However, this expression is not maxim/z.able through
analytical methods and therefore numerical algorithms
(e.g. Newton-Raphson) are used to maximize L. A
heuristic stepwise process for explanatory variable
selection can be used to build the model.

Two main problems were met while using this
approadz

(1) Several of the design metrics are ratios and many
instances show zero denominators and therefore
tmdefmed values. Logistic regression cannot gracefully
handle "undefined" cases. For instance, in this case,
using "dummy" variables would increase the number
of explanatory variables by nearly fifty percent.
Therefore, in order to address the problem, we replaced
the undefined values with zeros and calculated the
coefficients from this modified data set. In this way,
we insure that unde£med instances will not affect the
calculation of the l_elihood function.

(2) Two of the dependent variables are defined on
nominal scales. The only solution to deal with such
variable is to use "dummy" variables ['DG84]. In this
case, the two nominal variables force us to generate
eightdummy variablestobe consideredduringthe
stepwisevariableselectionprocess.For a larger
number of symbolic/nominal variables, this issue may
become a serious handicap for using the logistic
regression _.

Before starting the stepwise logistic regression process,
it is possible to reduce the dimensionality of the sample
space (i.e. 68 explanatory variables in our case) by
performing a principal component analysis [DG84] on
the available design and size metrics. Thus, we hope to
be able to extract a smaller number of variables
capturing most of the variation observed in the sample
space. As shown by [DG84, MK92], this may increase
the stability of the stepwise variable selection process
and therefore improve the predictive result of the
regression model.

2.3 Optimized Set Reduction

The second approach, Optimized Set Reduction (OSR),
is described in [BBT92, BBH92]. It is a modeling
approach which is based on both statistical and machine
learning principles ['BSOF84]. Given an historical data
set, OSR a-tomatically generates (through a search
algoritinn) a collection of logical expressions referred to
as patterns which characterize the trends observable in
the data set. As an example of a pattern, consider the
following:

(Predicatek OR Predicatel) AND Predicatem =>
Risk_classi.

where predicates have the form (EV i ¢ EVclassij),
meaning that a particular explanatory variable EVi

belongs to part of its value domain, i.e. EVclassij.

The expression on the left hand side of "=>"charammizas
a set of components from the historical data set. For
example, if a given component is such that it makes the
left hand side of the above logical expression true, it
implies that it is likely to be in the Risk_classi. For
each pattern genezated by OSR, a reliability of prediction
(i.e. estimated probability of performing the right
classification) and a its statistical significance (how
likely is this probability due to chance?) are calculated
based on the learning set. When using OSR, a collection
of relevant patterns associated with a component are
identified based on the learning set (i.e. the data set
minus the component). As a result of this process, it is
possible that several patterns characterizing the same
component could yield contradictory classifications. In
this case, the conflict is solved by t'trst eliminating
patterns that do not show a significant reliability. Then,
ff the re_mamingpauerns are still in conflict, the pattern
that shows the highest reliability is used for the
classification.

Patterns provide interpretable models where the impact
of each predicate can be easily evaluated. When
interpreting patterns, they should be read as regular
logical expressions with one main exception: the order
of thetermson each side of the "AND" operator is
meaningful. A predicate on a right-hand side of an AND
operator is statistically significant (i.e. has a significant
impact on the risk class probabilities) only if the
predicates on the left-hand side are true. In our example,
(Predicate k OR Predicate 1)is significant independent of
any context while Predicate m is only significant in the
context where (Predicate k OR Predicate1) is already
true. Strong associations (as det-medby the user) between
predicates are visible through OR connections.

The OSR l_Xgess will generate a set of patterns specific
of the data set provided. However, interdependencies

I0014023L 2-37

between explanatory variables may cause OSR to
produce numerous similar patterns which capture
essentially the same phenomena. This presents two
problems (1) it can make pattern interpretation more
confusing, since it masks predicate associations in
various contexts, and (2) it hides the significance of
phenomena which are represented by several similar
patterns whose statistical significance appears weak
independently, but is quite significant when grouped
together. In order to addressthese issues, algorithms,
supported by tools, have been designed to merge
"similar" patterns according to a user defined,
statistically based, degree of similarity [BBH92]. These
algcritlm_s have been used in order to obtain the patterns
presented in the next sections.

It should be noted that in the design of OSR, we have
alleviated some of the problems encountered in the
logistic regression model. The "division by zero" cases
can be handled as well as any other cases since it is
simply deemed as just another class of the variable's
domain. Also, nominal and continuous explanatory
variables are selected and included in the model in a
consistent manner, since both are considered as
predicates. One possible limitation of OSR is that it
requirescontinuousexplanatoryvariable rangestobe

divided in intervals. However, Otis is done automatically
by clustering algorithms which calculate optimal
boundaries.

2.4 Evaluation of Models

Accuracy of models is compared from two different
perspectives: their completeness and their correctness in
identifying high risk components. Completeness is the
percentage of components that have generated difficult
errors that have been actually recognized as such by the
model. It tells us how effective the model is in
determining the high risk components, and thus can be
used to determine the benefit of applying remedial
actions to these components. Correcmess is the
percentage of cofr_t classifications when a component is
classified in the high risk class. It tells us the cost of
achieving that level of effectiveness in the model. Both
measures are necessary to perform a cost/benefit analysis
on remedial actions taken on the components identified
as high risk. For instance, given a particular
completeness, if cofrecmess is low, the remedial action
will be taken on many components which are actually
not high risk, creating waste of resources and therefore
increasing the cost of the action. On the ocher hand, if
correctness is high, waste of resources will be
minimized.

Interpretability of a model will be defined as "the
capability, based on the model, to quantify in various
contexts the association (interpretable as a cause-effect

relationship) of explanatory variables with the defined
notion of risk".Thiswillbe assessedfor each modeling
technique by evaluating their capability to provide such
quantification.

3. Metrics Used in the Study

The metrics used in the study were obtained from a
project whose goals were to build multivariate models of
software quality based on architectural characteristics of
Ada designs [AES90]. This project explores the view
that characteristics of the software archi_ctm'e can be

extracted from Ada designs usingstatic analysis, and can
be used to predia various quality factors in the delivered
product[AE92,AE+92,EA92].

3.1 An Architectural View of the System

The increased use of Ada as a design as well as an
implementation language offers the opportunity to better
assess the product in its intermediate stages. Since the
design and the final product are written in the same
language, Ada, we can use tools developed for analysis
of Ada source code to provide an automated means for
analyzing Ada designs. This automation is essential if
one is to frequently measure andassessthedesign.

The architectural view of the Ada system can be derived
by identifying the major components of the system, and
determining the relationships among them. The library
unit aggregation (LUA), or the library unit and all its
descendantsecondaryunits[AES90], has beennotedas

providingan interestingview of an Aria system.
Example relationshipsbetween LUAs are the
importer/exporterrelationshipand the relationship
between an instantiationand itsgenerictemplate.
Characteristicsof the LUAs and the relationships
between LUAs were used to develop multivariate
statisticalmodels of qualityfactorssuch as defect
density, error correction effort,and change
implementationeffort[AE92, AE+92, EA92]. The
characteristicsthatwere includedin thisstudyare
describedbelow.

3.2 Description of Design Characteristics

The meuics used in this study are derived from the
architecture of the system, and were obtained by an

automated static analysis of the source code using the
ASAP static analysis program [Dou87], UNIX utilities,
and the SAS statistical analysis system. They were
generated as part of a research project performed at the
MITRE Corlxration whose goal was to develop models
to predict various product qualities throughout the
development process [AESg0,AE92]. At the heart of the
measures are counts of declaiations in an LUA - whether
they are declarations made in the LUA, declarations

10014023L 2-38

imported to the LUA (i.e. those declared in another LUA
made visible by a "with" clause), declarations exported
by the LUA (i.e. declarations made in the LUA, and
visible to other units that import the LUA), and
declarations hidden from these importing units (i.e.
declarations made in the associated body and subanits). A
collection of metrics were developed from hypotheses
about the nature of the software design process. These,
in addition to other raw measures extracted from the
source code were used in this study. The metrics include
indications of design characteristics such as the extent of
imports, context coupling, visibility control, locality of
imports, and parameterization. These characteristics are
explained below.

• Imports: the number of declarations imported (via a
"with" clause) to a LUA. This measure is an
indication of the amount of services used by a
particular unit. A unit that does not import must
develop hidden units to allow for the provision of
services listed in its specification. On the other
hand, a unit that imports too extensively may not
be cohesive as possible. At times, either extreme
may be a problem area.

• Context Coupling Ratio: the ratio of declarations
imported by a LUA divided by the decmations
expor_ by the LUA. This measure is an indication
of the amount of services used by a particular unit
relative to what services it provides. As with
imports, either extreme my bea problem area.

• Locality of Imports: the percentage of imported
declarations that originate from the same subsystem
as the LUA of interest. It is believed that a

developer is more familiar with LUAs of the same
subsystem as the LUA that he is developing.When
the LUA imports primarily from these "local"
LUAs, there may be a reduced chance of a
misunderstanding about the imports.

[AES90]. When this ratio is equal to one, it
indicates that de,clamtions are being imported directly
to each compilation unit that uses them. As the
ratio increases, it indicates the extent of indirect
import visibility, relative to direct import visibility,
which can be taken as a proxy for whether the
imports are occurring only at the level in which
ttzy are needed.

3.3 Measurement of Design Characteristics

The above design character_cs have only been described
in a general manner. Different ways of counting
declarations will result in a collection of similar metrics.
For example, the ratio of imports over exports can be
det-med in terms of total declarations (i.e. the total
number of imported declarations divided by the total
number of exported declarations), or in terms of
subprogram declarations (i.e. the number of imported
subprograms divided by the number of exported
subprograms). While these are two different measures,
there is a significant degree of similarity. However, one
major difference is that the count of all subprogram
declarations should be available at an earfier phase of the
design than the count of total declarations. Thus a model
using metrics based on subprogramdeclarations can be
can be applied at an earlier stage in the design than one
using metrics based on total declarations. The metrics
used are distinguished by differentiating between various
types of declarations, (i.e. packages, subprograms, tasks,
types, subtypes, objects, formal parameters, constants,
and exceptions), and by whether they differentiate
overloaded names. Counts of declarations made in each
LUA, as well as the metrics described in 3.2, were also
used in the analysis.

4 Classification Accuracy of the
Generated Models

- Parameterizatiou: This characteristic relates to how

well the LUA is param_. The metric used is
the average number of parameters per program unit
declaration in the LUA. Too many parameters may
be an indication that the unit is not cohesive,and
thus could be more difficult to understand, while too
few may result in an inflexible structure, and thus
make adaptation and modification more difficult.
Either exlreme may adversely affect quality.

Visibility Control: This design characteristic
attempts to capture the extent to which declarations
are imported to where they are needed, as suggested
in [GKB86]. The metric used is a ratio of "cascaded
imports"(or declarations directly imported to a
higher level unit in the LUA, and whose vis_ility
"cascades" to the descendent units),todirectimports

4.1 Classification Rules

As said in section 2.3, during the OSR Im3CeSS,several
pauerns are generated for each LUA to be predicted. For
each of these patterns, a specific classification is
calculated based upon the pattern vector subset that it
characterizes and its corresponding disuibution across
risk classes. Those classifications are used in order to
determine the final classification of the LUA.
Unfortunately, the patterns may yield different
classifications. In this case, the first criterion used for
classifying the LUA is the pattern reliabilities. The
pattern with the maximum reliability is selected for
classification. When several patterns show an identical
reliability, then the statistical significance of this
reliability- (i.e. probability that this reliability is
obtained by chance) is compared. The pattern with the

10014023L 2-39

best level of significance is selected. With respect to
logistic regression, the calculated risk class probabilities
(see section 2.2) are used. A decision boundary of 0.5
was used since the original data set contained the same
number of data points within each risk class, i.e. the a
priori class probabilities are 0.5.

4.2 Predictive Accuracy

Tables 1 and 2 comp_es the modeling techniques, for
both high isolation cost and high completion cost,
respectively, the average correcmess (i.e. the percentage
of correct classifications in both high and low risk
classes), the correctness of the model when looking at
the high risk class only, and the completeness of the
model with respect to the high risk class LUAs.

Comp_teness

High Class
C_

nl

Average
Correctness

Logistic

Re_ression
62%

I

83%

75%

OSR

84%

83%

82%

Table 1: High Isolation Cost Model
Accuracies

Completeness

High Class
C_

Average
C_

Logistic
Re_ression

66%

82%

76%

OSR

94%

81%

87%

Table 2: High Completion Cost Model
Accuracies

The logistic regression results presented in the tables
were obtained without using principal component
analysis. Unexpectedly, the results were poorer when the
principal components were used in the logistic
regression equation, so we therefore decided to use the
results obtained without the principal components.

In both result tables, the same phenomenon may be
observed: logistic regression and OSR had similar results
in terms of high classcorrectness, but OSR performed
much better in terms of average correcmess and
completeness. The decision rules can be adjusted for

1O014023L

either technique to allow, for example, a higher
completeness (at the expense of correcmess); however, in
this example, the logistic regression technique can not
achieve a level of completeness comparable to OSR
without sacrificingcorrectness.

5 Lessons Learned Through Model
Interpretation

In thissectionwe willdiscusstheinterpretabilityof
logisticregressionequations.Then we willinterpretthe
generatedOSR patternsin orderto assesshow they
support our hypotheses about software reliability and
modifiability.Through examples,we will demonstrate
how OSR can be a useful tool in order to perform
exploratorydataanalysis.

5,1 Interpretation of Logistic
Regression Equations

As an experiment to assess the stability and therefore the
meaning and interpretabifity of the calculated regression
coefficient estimates, we recalculated the model several
times the model calculated for completion effort. Each of
the model's explanatory variables was successively
removed from the equation and the model was
recalculated. Table 5.3 show the variations of coefficient
estimates. Each column is labelled with the removed

explanatory variable. At a first glance, many explanatory
variables become non-significant at the 0.05 level
(flagged with *). Also parameters like LUUIOBJ,
LUISUBP, LUEXC have a large variation in their
associated coefficients, although they remain significant.
Some of these phenomena are easily explained by
looking at the correlation matrix of those variables.
Surougdirect correlations can be observed among several
pairs of variables: R(LUUIOBJ, LUIOBJ)=0.816,
R(LUISUBP,LUIOBJ)=0.543, R(LUISUBP,
LUEXC)---0.447. However, these correlations cannot
explain most the variation observable in Table 5.3, e.g.,
when LUIOBJ is removed, LUFNEMS becomes non-
significant.

Thisinstabilitymay be explainedby theunavoidable
violationinmany realworld data sets of many ofthe
importantassumptionsunderlyingregressionanalysis.
Homoscedasticityis assumed but not guaranteed:
althoughexplanatoryvariablesmay be goodpredictors
on a part of their range and non-significant elsewhere,
regression assumes a predictor to be globally significant
or not significant. Also, the significance of explanatory
variables as predictors is strongly dependent of the
context which is defined by the actual value of the other
explanatory variables, e.g. the ratio of cascaded imports
may be significant uniquely in the context where the
number of imported parameters and subprograms is
large. The straightforward question which can be asked

2-40

intercept

_C

LUXTYP

LUIOBJ

LUISUBP

LUUIOBJ

l l

None

3.990

-1.383

0.086

-0.238

-2.835

2.496

-0.370

-2.202

_C

1.444

0.023 *

-0.196

-0.608 *

1.560

-0.028

-1.410

IAJPUDS

3.160

-0.870

-0.195

-2.120

1.800

-0.025

-I.600

Table 3: Instability of

2.658

-1.160

0.067
I

-1.997

2.029

-0.027

-1.824
I

Regression

LUFNEMS

1.280

-0.760

0.060

-0.163

1.779

-0.029

-1.626

LUIOBJ

1 _215

-0.421

0.000 *

-0.I07 *

-0.872 *

-0.001*

0.113 * i

LUISUBP

2.180

-1.040

0.004*

-0.I03 *

-1.917

0.775

-0.7o3 I

Coefficient Estimates

LUUIOBJ

1.600

-0.559

0.022*

-0.148

-1.32

0.453

-.009

when looking at the latter results is: are these

coefficients interpretable (i.e. can we determine which

ones have the strongest impact on the risk of having an

error difficult to complete)? The answer is that only the

coefficients that remained reasonably stable can be

interpreted with a reasonable certainty. With respect to

the other coefficients, it may be concluded that they have
some difficult to quantify influence in some
undetermined context.

5.2 Interpretation of OSR Patterns

In this section, we discuss the patterns generated by
OSR. Then, we compare the interpretability of the
respective patterns and regression equations. Some of the
statistically significant, reliable patterns indicating high
risk generated by the OSR process are presented and
discussed. There are two groups of pauerns, those related
to isohtion cost and those related to completion cost.
The format in which the patterns are presented is
described below. Assume we want to represent the
following patterns:

(1) (Pm_catekOR Predicatel)AND F_wAicatem

(2) (PredicatekOR Predicatel)AND Predicaten.

In this case, the patterns and associated information
would be provided in the following format where
Predicatem and Predicaten are defined in the context of
Predicacek OR Predicatel:

Predicatek OR Predicatel
Statisticsld

Predk:atem:

Statisticsm

Pred/caten:
Statistiesn

whereStatistics is asetofthe followingfields:

• Variation in Entropy (AID of the pattern : this
represents the impact of a predicate in a
determined contexL

• Probabilityof being in the high riskclass (PH)

* Number of Pattern Vectors (#PV) in the learning

setmatching the predicate in itscontext.

Predicates are of the form EV x ¢ SETxy, where EVx is
an explanatory variable, and SETxy a subset of the value
domain of EV x.

5.2.1 Isolation Patterns

For the risk of having an error that is difficult to isolate,
five major influences were found. These are: the number
of imported declarations to the library unit aggregation
(LUA), the size of the LUA, the degree of visibility
control in the LUA, the locality of imports to the LUA,
the extent of control flow in the LUA, and the number
of user declared exceptions in the LUA. These
influences are described in the following paragraphs, and

will be discussed in the context in which they were

determined to be significant.For each of these influential

factors, examples of patterns associated with the factors

me presented.

(1) number of imports:

LUISUBP e [69%,100%] OR LUIPAR ¢ [75%,100%]

All = 0.32, PHfO.82,#PV=39

LUIUDEC e.[72%,100%] OR LUITOT G [72%,I00%]

AH = 0.36, PH=0.84,#PV=37

LUCALLS _ [66%, 100_]
All = 0.30, PH=0.81,#PV=42

LUISUBP _ [35%, 100%]

AI! = 0.62, PH=0.926,#PV=27

A large number of imports to the LUA appears to be a
significant indicator that the LUA may have a difficult to
isolate error. There may be several reasons forthis, since
a large number of direct imports is often the result of

10014023L 2-41

two influences: am, ge number of imported services, and
a large number of compilation units that import the
same service. On the other hand, a low number of
imports appears to reduce the risk of having an error
difficult to isolate.When there is little interactionwith

other library units, it may be easier for the programmer
to isolate the origin of the error and to understand its
consequences on the system functionalities. This
phenomenon appears to be very influential according to
the generated patterns since the corresponding predicates
create in average the largest total variation of reliability.
As indicated by the above patterns, this indication may
be obtained early in development, e.g. by examining the
number of imported subprograms (LUISUBP) or
parameters (LUIPAR), or late, e.g. by examining the
total number of imported declarations, LUITOT, or
unique declarations (LUIUDEC, a similar count of
imported declarations, but with overloaded declarations
only counted once).

(2) Size of library unit aggregation:

declarations are being imported into top level units in
the library unit aggregation (e.g the LUA itself), and not
into the low level units, where it is likely that the
imported services are to be used. In this situation, to
understand the interface of any single compilation unit,
one must examine the interface of its ancestor units

(from where the declarations were cascaded). This may
result in additional exror isolation effort.

(4)ControlFlow:

LUAVECFe [63%, 100%]
AH = 0.17, PH=0.74,#PV---46

LUCALLS• [66%,100%]
AH = 0.30. PH=0.81,#PV=42

LUIEPUD• [63%, 100%]
AH = 0.14, PH=O.86,#PV=A6

LUCALLS • [45%, 100%]
AH = 0.37, PH=0.91,#PV=I 1

LUSLOC • [53%, 100%]
AH = 0.18, PHf0.74,#PV=58

LUOBJ¢ [71%,100%]OR LUSLOC • [71%,100%]
OR LUADA • [70%,100%]
All = 0.24, PH=0.78,#PV=4t

LUCALLS• [66%,100%]
AH = 0.30, PH=0.81,#PVffi42

LUOBI • [47%, 100%]
AH = 0.73, PH=0.95,#PV=22

The size of the LUA in question appears to be a
significant indicator of the presence of a difficult to
isolate error. When the LUA has a very small size, i.e.
first quartile, e_x_rs are not as likely to appear, and when
they do appear, they ate not likely to be difficult to
understand and isolate. On the other hand, the larger
LUAs are much more likely to contain a difficult to
isolate error. Mote information has to be analyzed in
order to understand the structure and content of the LUA,
adding to isolation effort. Several metrics are seen as
such an indicator of a high risk component - from counts
of object declarations (LUOBJ) to counts of statements
(LUADA) and source lines of code (LUSLOC) in the
component.

(3) Visibility Control:

LUVCPUD• [70%,100%]
AH = 0.18,PH=0.74,#PV=35

The ratio of cascaded imports to direct imports [AES90]
provides a crude measure as to whether declarations are
being imported directly to wbe_ they me needed. A large
ratioof cascaded imports m direct imports indicates that

Components with an excessive number of call branches
are likely to be more difficult to understand and isolate
an error, because of the additional paths that must be
explored. LUAVECF, or the average number of call
statementspetsubprogram in the LUA, was found to be
an indicatorofhighisolationdifficultywhen itwas in
the uppermostquartile,supportingthe hypothesis.
LUCALLS, the count of callstatementsin the

aggregation,isrelatedtobothcontrolflowand sizeof
theLUA. When thisislarge,thereisahighprobability
that there will be a difficult to isolate error, supporting
the hypotheses about size and control flow. Also, we see
that LUCALLS provides an even stronger prediction
when in the context of a large context coupling ratio
(LUIEPUD), as is evidenced by the increased probability
of being in the high risk class.

(5) Context Coupling ratio:

LUIEPUD• [63%, 100%]
AH = 0.14, PH=O.72,#PV=46

LUIEUDEC•[42%,100%]OR LUIETOTe[42%,100%]
AH = 0.07, PH=O.66,#PV=73

One measure of design complexity suggested in [AE92]
is context coupling, which measures the interconnection
of compilation units. The ratio of imported to exported
declarations was suggested as useful indicator of this
type of complexity, as it accounts for the number of
declarations made visibleby context coupling,
normalized by the number of exports in the library unit.
We see that as this ratio increases, the likelihood of a
difficult to isolate error also increases. Again, we see
this influence both with measures available early (with
the ratio measured by program unit declarations,

10014023L 2-42

LUIEPUD), and late, measured by total declarations and
unique declaralions (LUIL:TOT and LUIEUDEC).

(6) Number of exceptions:

LUEXC _ [76%, 100%]
AH = 0.28, PH----0.g0,#PV=30

One interesting frequently occuring pauera indicating a
high risk component included the number of user

declared exceptions (LUEXC) being in the uppermost
quartile. Exception handling is an of_l overlooked and

misunderstood feature of the Ada language; this pattern
indicates that there may have been difficulty with it in
this environment. Further investigation would be
necessary to confirm this, but, in any event, it does

serve as a useful indicator of a high risk component.

(7) Locality of imports:

LUIOUDEC ¢ [84%,100%]

AH = 0.26,PH----O.21,#PV=I9

We expected thathavingmost imports originatelocally
would reduce the likelihood of such a high riskerror, as
the designer(s)/programmer(s) may have a greater
familiarity with artifacts of his own subsystem than
with those of other subsystems. LUIOUDEC is a
measure of the fraction of importedunique declarations
that are declared in the same subsystem as the LUA in
question. We see that when it is extreme, i.e. most to all

imports come from "local" units, there is a low
probability (0.21) of being in the high risk class.

5.2.2 Completion Patterns

Here again, several phenomena related to the
assumptions made in section 3 may be observed from
these pauems:

(1) Visibility Control:

LUVCPUD e [58%,100%]
AH = 0.13,PH=O.71,#PV=62

LUSLCX_ ¢ [68%, 100%]
AH = 0.10, PH--0.68,#PV=47

LUVCTOT G [25% ,100%]
AH = 0.34, PH--0.g3,#PV=35

LUUITOT ¢ [69%, 100%]
AH = 0.11, PH--0.69,#PV=46

LUVCTOT ¢ [36% ,100%]

OR LUVCUDEC¢ [43% ,100%]
AH = 0.42, PH=0.86,#PV=29

LUINST _ [76%, 100%]
AH = 0.22, PH=O.77,#PV=35

LUVCUDEC ¢ [45% ,100%]

OR LUVCTOT • [45% ,100%]
AH = 0.70, PH=0.95,#PV=19

A large ratio of cascaded imports to direct imports raises
the risk of having an associated difficult to complete
error. This was typically found to be significant in the
context of a large LUA or a LUA that contains a large
number of imports (cascaded or direct). If declarations are
not imported directly to where they are needed, it may
result in additional effort to understand the unit, which

may result in additional error correction effort.

(2) Number of imports:

LUKJDEC • [77%,100%]
AH = 0.09, PH=0.67,#PV=49

LUCUDEC ¢ [48% ,100%]

AH = 0.37,PH=0.g4,#PV=25

LUCUDEC • [60%, 100%] OR LUCTOT _ [58%, 100_]
AH = 0.09, PH=0.68,#PV=62

A large number of imports (i.e. subprograms, types,
subtypes, formal parameters) to a library unit
aggregation appears to increase the risk of having an
error difficult to complete a change. This appears
whether the imports are counted in terms of direct

imports or cascaded imports. As explained previously,
while this may be a due to a library unit aggregation
requiringthe servicesof an excessive number of other

LUAs, it may also be an indicator of the size of the

aggregation itself; since multiple compilation units in
the largerLUAs oftenimport the services of the same

LUA, thereby increasing the measures found in the
above predicates. When there is less interactionwith

other LUAs, it may be easier to implement the change
and evaluate its consequences on the system
functionalities. As with the effort to isolate a change,
this phenomenon appears to be very frequent and
influential. The influence can be seen as measured by
direct(LUIUD_) andcascaded(LUCiDT, LUCUDEC)
imports.

(4) Size of I_UAs:

LUPUDS • [65%,100%]OR LUSLrBP • [65%,100%]
All= 0.09,PH=0.67,#PV=52

LUOBJ _ [52%, 100%]
AH = 0.05, PH=0.63,#FV=72

If the LUA_has a very large size, then errors are more
likely to appear and changes are more likely to be
difficult to complete. It is expected to see large LUAs to

10014023L 2-43

be likely to require additional effort to understand,
correct, and verify. Here, we see patternsthat indicate
that LUAs containing many program unit declarations
(LUPUD), subprogramdeclarations(LUSUBP), and

objectdeclarations(LUOBJ) aremort likelytobeinthe
highcostclass.
(5) Number of exceptions:

LUEXC • [73%, 100%]
AH = 0.19, PH=O.75,#PV--40

As with the isolation cost models, when there are many
exceptions declared there is an increased probability of a
difficult to complete error. These patterns may be
indicative of problems in controlling exception handling.

(6) Count of Instantiations:

(1) They explicitly describe the context in which
predicates appear to be significant predioors.

(2) The impactof a predicate is only dependent on the
defined context as opposed to regression parameters
that may be sensitive to many parameters in the
regressionmodel. This indicates that the patterns will
be stable, which our generated regression models were
not.

(3) They show expliciOy the associations in various
contexts between exploratory variables.

(4) They explicitly define the range on which a
variable appears to be an accurate predictor.

6 Conclusions

LUINST• [76%, 100%]

All = 0.22,PH--0.77,#PV=35

LUCUDEC • [60%,100%] OR LUCTOT • [58%,100%]
AH = 0.09, PH=0.G8,#PV=62

LUINSTe [56% ,I00%]

AH = 0.50, PH--0.89,#PV=27

LUAs with a relatively large nmnber of instantianted
generics (LUINST) were found to be likely to have a
difficult to complete error. This is even more significant
in the context of a large number of cascaded imports. As
with the previously noted difficulty with excel_ions, this
may be an indicator of difficulty with the Ada generic
features. Again, further investigation would be necessary
determine this.

(7)Paramez_zati_:

LUAVECF• (0%,57%] OR LUCALLS• [0%,56%]
AH = 0.04, PH=0.38,#PV---92

LUPARM• [66%,100%] OR LUPARPV • [72%,

100%] OR LUPARPD • [72%, 100%]

AH = 0.30,PHf0.19,#PV=32

This patternfocuseson theparameterizationof the
importedunits.When we haveawellparameterizedunit,
i.e. a large number declared parmneters (LUPARM), or a
high ratio of parameters per program unit declaration
(LUPARPD), or visible parameters per vis_le program
unit declaration (LUPARPV), we see a low probability
(0.19) of a difficult to complete errs.

$.2.3 Discussion of Pattern Interpretability

As we have seen in the above examples, in contrast to
the regression equations, patterns are more suitable for
interpretationfor thefollowingreasons:

We can draw three majoramdusions fromthese
experimental results:

(1) With respect to Ada systems, it seems possible to
build accurate risk models during the design phase to
help designer prevent difficulties and testers manage
their resources. In other words, we have shown that it
may be possible to construct models which facilitate
cost benefit analysis using model correcmess and
completeness. The analysis may be used to make
decisions concerning remedial actions during
development.

(2) The Optimized Set Reduction approach seems to
be a good alternative for multivariate empirical
modeling in this application domain since the paaern-
basedclassificationappearmore accuratethanthose
fromlogistic regression equations.Thisalsoconfums

previous studies showing similar results for other
kindsofapplications[BBT92, BBH92].

(3) Patternsappear to be more stableand more

inmrlaemblestructuresthanregressionequationswhen
the theoretical underlying assumptions are not met.
This is a very important point in the context of the
improvement paradigm [BR88].Feedbackandthc_fore

process improvement is only poss_le ff thegenerated
quantitative models are interpretable. Taking effective
corrective actions is only possible when the impact of
controllable factors on the parameters to be controlled
(e.g. cost or quality) can be fully understood and
qu_tifie_

The primary limitations of the OSR approach are the
following:

(I) OSR beinga searchalgorithm,computationis
moreintensivethanforananalyticalmodel.

10014023L 2-44

(2) OSR may be comparatively less accurate when the

assumptions underlying the logistic regression

analysis are met.

7 Acknowledgments

We would like to thank Victor Basili for his comments

on this paper. Also, we would like to thank William

Agresti, Frank McCrarry and Ion Valett for their support

in providing the data used in this analysis.

8 References

[Agtg0] A. Agresti, Categorical Data Analysis, John Wiley
& Sons, 1990.

[AES90] W. Agresti, W. Evanco, and M. Smith, "Early
Experiences Building a Software Quality Prediction Model',
Proceedings of the F_eenth Annual Software Engineering

Workshop, November, 1990.

[AE92] W. Agresti and W. Evanco, "Projecting Software
Defects from, Analyzing Ada Designs', IEEE Trans.

Software Eng., 18 (11), November, 1992.

[AE+92] W. Agresti, W. Evanco, D. Murphy, W. Thomas,
and B. Ulery, "Statistical Models for Ada Design Quality',
Proceedings of the Fourth Software Quality Workshop,

Alexandria Bay, New York, August, 1992.

[Bas85] V. Basfli, "Quantitative Evaluation of Software
Methodology', Proceedings of the First Pan Pacific

Computer Conference, Australia, July 1985.

[BR88] V. Basili and H. Rombach,'The TAME Project:

Towards Improvement-Oriented Software Environments',
IEEE Trans. Software Eng., 14 (6), June, 1988.

[BF+84] L. Breiman, J. Friedman, R. Olshen and C. Stone,

Classification and Regression Trees, Wadsworth &

Brooks/Cole, Monterey, California, 1984.

[BP92] L. Briand and A. Porter, "An Alternative Modeling

Approach for Predicting Error Profiles in Ada Systems',
EUROMETRICS '92, European Conference on Quantitative
Evaluation of Software and Systems, Brussels, Belgium,
April 1992.

[BBH92] L. Briand, V. Basili and C. Hetmanski, "Providing

an Empirical Basis for Optimizing the Verification and

Testing Phases of Software Development', IEEE

International Symposium on Software Reliability

Engineering, North Carolina, October 1992.

['BBT92] L. Briand, V. Basili and W. Thomas, "A Pattern
Recognition Approach for Software Enginnering Data
Analysis', IEEE Trans. Software Eng., 18 (11), November,
1992.

[CA88] D. Card and W. Agresti, "Measuring Software

Design Complexity', Journal of Systems and Software, 8
(3), March, 1988.

[DG84] W. Dillon and M. Goldstein, Multivariate Analysis:

Methods and Applications, W'dey and Sons, 1984.

[Dou87] D. Doubleday, "ASAP: An Ada Static Source Code

Analyzer Program', TR-1895, Department of Computer
Science, University of Maryland, August, 1987.

[EA92] W. Evanco and W. Agresti, "Statistical
Representations and Analyses of Software', Proceedings of

the 24th Symposium on the Imerface of Computing Science

and Statistics', College Station, Texas, March. 1992.

[GKB86] J. Gannon, E. Katz, and V. Basili, "Metrics for Ada
Packages: An Initial Study', Communications of the ACM,

29 (7), July, 1986.

[HKgl] S. Henry and D. Kafura, "Software Structure Meurics
Based on Information Flow', IEEE Trans. Software Eng., 7

(5), September, 1981.

[MK92] J. Munson and T. Khoshgoftaar, "The Detection of
Fault-Prone Programs', IEEE Trans. Software Eng., 18 (5),

May, 1992.

[PA+82] H. Potier, J. Albin, R. Ferreol and A. Biiodeau,
"Experiments with Computer Software Complexity and
Reliability', Proceedings of the Sixth International

Conference on Software Engineering , September, 1982.

[Qui86] J.Quinlan, "Inductionof Decision Trees',Machine

Learning I,Number I, 1986.

[Rom87] H. D. Rombach, "A Controlled Experiment on the

Impact of Software Structure on Maintainability', IEEE

Trans. Software Eng., 13 (3), March, 1987.

[SP88] R. Selby and A. Porter, "Learning from Examples:
Generation and Evaluation of Decision Trees for Software

Resource Analysis', IEEE Trans. Software Eng., 14 (12),

December, 1988.

10014023L 2-45

